Tag-arkiv: dødelighed

Dødelighed i Danmark – en update

Hver gang man skriver, at coronavirus ikke er nær så dødelig som statsministeren og de fleste medier synes at mene, står der en hær af modstandere klar. Med jævnlige beskyldninger om at være Trump-apologet, Bolsonaro-elsker, eller blot en kynisk og menneskefjendsk person, er det blevet ganske ubehageligt at holde fast i fakta for tiden. En insisteren på fakta er dog en af vores fremmeste opgaver her på stedet, og det gælder i lige så høj grad coronavirussen som økonomiske og politiske forhold. Med risiko for endnu en gang at blive udskreget på de sociale medier (jeg heldigvis ikke deltager i), handler dagens post om hvordan den faktisk dødelighed ser ud i Danmark.

Vi formidler fakta gennem to figurer: Den ene viser de ugentlige dødstal for danskere under 60 år, mens den anden viser de samme tal for danskere der er 60 år eller ældre. For begge serier viser vi tallene for uge 38-22 i 2016-17, gennemsnittet for 2017-18 og 2018-19, og for den nuværende sæson 2019-20 (hvor data for uge 20-22 ikke er tilgængelige endnu). Dataene følger således hvad man normalt betragter som influenzasæsonen. De danske data er interessante på mindst to måder: For det første kan de tydeligt vise over- og underdødelighed uge for uge og totalt set, og for det andet kaster de ekstra lys over timingen af forskellene.

Læs resten

Hvor mange vil blive smittet med covid-19, inden det er ovre?

Der er mange usikre momenter knyttet til konsekvenserne af den igangværende corona-pandemi. Hvor mange vil blive smittet, hvor mange vil dø, og hvad bliver de nationaløkonomiske konsekvenser? Der er meget varierende bud lige i øjeblikket. Dette blogindlæg handler om de to første spørgsmål.

Sagt med det samme, så har jeg ingen ekspertise i epidemiologi. Men her er nogle meget simple, og dog alligevel illustrative matematiske sammenhænge mellem få centrale størrelser. Det giver en ramme at tænke inden for (og skal ikke tages som en prognose – den må I selv lave).

Den første størrelse, R, er, hvor mange én smittet giver sin smitte videre til. Rammer man f.eks. to personer, er R lig med to. Den anden er S, som betegner den andel af befolkningen, som er modtagelig for smitte. 1-S er modsat den andel af befolkningen som er immun. Man kan være immun, fordi man allerede har haft sygdommen, fordi man er vaccineret, eller fordi man af andre grunde ikke er modtagelig.

Hvornår vil sygdommen holde op med at blive spredt? Så længe hver sygdomsramt smitter mindst én person mere, som også bliver syg, vil sygdommen fortsætte. Når hver smittet derimod i gennemsnit videregiver sygdommen til mindre end én person mere, begynder sygdommen at dø ud.

Det punkt, hvor sygdommen holder op at vokse i udbredelse, er med andre ord når:

RS = 1

Det vil derfor sige, at sygdommen vokser indtil*):

S = 1/R

Er R f.eks. 2, vil sygdommen vokse indtil det punkt, hvor halvdelen af befolkningen kan smittes, mens den anden halvdel er immun.

Og hvis man kun kan blive immun ved at have haft sygdommen – og altså ikke ved f.eks. at blive vaccineret — ja så vil 1-S blive syge, før sygdommen klinger af. Ved at omordne udtrykket lidt fås antallet af immune, når sygdommen begynder at klinge af:

1 – S = (R-1)/R

Som man kan se, vil den andel, som bliver sygdomsramt i løbet af pandemien, afhænge af R. Jo større R, desto tættere kommer brøken på én. Er R 10, vil 90 pct. blive smittet.

I figuren har jeg vist sammenhængen mellem størrelsen af R og andelen af smittede, 1-S. Som man kan se, har størrelsen af R en meget stor betydning navnlig, når niveauet ligger i den lave ende. En lille stigning i R har stor effekt på den andel, der ender med at blive smittet, før sygdommen klinger af. Det betyder også, at usikkerheden er stor, når man regner med et lavt R. Ved et R på 1, vil sygdommen klinge af med det samme, mens den ved på et R på 2 vil smitte halvdelen af befolkningen. Ved et R på 3 vil den ramme 2/3 af befolkningen.

Det kan vise, hvorfor små justeringer i smitterisiko kan begrunde store politikændringer, når man i udgangspunktet skønner R lavt.

 

Hvor mange dødsfald vil der komme? Det afhænger af, hvor mange af de syge, som dør. Fataliteten vil som udgangspunkt være proportional med den andel af befolkningen, 1-S, som er immune: Når man bliver smittet, bliver man enten immun eller dør af den. Fatalitetsraten ved covic-19 er der mange bud på. Denne rate kan man gange med 1-S for at få den omtrentlige fatalitet for hele befolkningen. Det betyder, at den usikkerhed, som knytter sig til 1-S også gælder antallet dødsfald. Desværre kan man ikke udelukke risikoen for, at covid-19 kan ende med at koste rigtig mange livet, om end risikoen selvsagt er størst blandt dem, som i forvejen har en høj overdødelig.

Men fatalitetsraten kan naturligvis afhænge af antallet af smittede, hvis der opstår kapacitetsproblemer i sundhedsvæsenet. Ved et lille antal kritisk syge vil alle kunne tilbydes behandles, mens et stort antal kan resultere i, at nogle syge, som ellers ville have overlevet, ikke gør det.

Det er vigtigt at være opmærksom på, hvordan antallet af smittede vil forløbe. I begyndelsen af epidemiudbruddet, når andelen af smitbare er meget stort, vil væksten være eksponentiel. Hver syg smitter jo RS, og når S er tæt på én, vil antallet af nye smittede være tæt på R. Men i takt med, at andelen af smitbare falder, vil S komme til at dominere, hvor mange nye der smittes.

Denne sammenhæng kan også være med til at forklare, hvorfor et lille land kan virke hårdere angrebet end et stort land i begyndelsen af en epidemi. Hvis epidemien begynder med én smittet i både et stort og et lille land, vil antallet af smittede vokse lige hurtigt (hvis R er ens i de to lande). Men S vil falde hurtigere i det lille land end det store, fordi andelen af immune vokser hurtigere, når antallet af immune vokser med det samme i udgangssituationen.

Denne lille matematiske eksercits kan illustrere nogle pointer omkring den nuværende politiske indsats:

Hjælper det at begrænse smitterisikoen, R? Ja, der er egentlig to scenarier. Det ene er, hvis man kan begrænse R så meget, at sygdommen bliver slået ihjel. Men jo færre, der allerede er eller har været smittet, når man griber ind, desto vanskeligere er det at slå sygdommen ihjel. Man kæmper jo mod et højt S.

Det andet scenario er, hvor man midlertidigt holder R nede. Og det er helt klart det scenario, regeringen opererer i. Ved at nedsætte kontakten mellem borgerne i en periode falder R. Man kan sige, at det ikke hjælper så meget at holde smitterisikoen nede, hvis det samme antal alligevel får sygdommen bare på lidt længere sigt. Men der er faktisk nogle rigtigt gode grunde. For det første kan man begrænse belastningen af sundhedsvæsenet, så dødeligheden ikke accelererer. Hvis man strækker sygdomsforløbet ud, bliver kapacitetsbelastningen mindre, når sygdomsudbruddet topper. Til gengæld tager det længere tid at komme igennem. En lavere belastning hjælper altså med at forhindre, at kapacitetspresset øger fatalitetsraten, så flere ender med at dø. For det andet kan sygdommen mildnes med tiden, så fatalitetsraten falder. Det vil også begrænse det endelige dødstal. Vira har faktisk en tendens til at blive mildere med tiden, fordi lettere varianter bliver mere udbredt (men da det afhænger af tilfældigheder, er det ikke en garanti). For det tredje kan en forsinkelse af sygdomsforløbet måske købe os lidt tid til at udvikle en vaccine. Hvis folk kan blive immune på anden måde end ved at få sygdommen, vil færre dø og få de ubehageligheder, der under alle omstændigheder er ved at være syg.

Der er naturligvis begrænsninger på, hvor langt disse få simple ligninger kan bringe os. Et problem er f.eks. antagelsen om, at smittede, der bliver raske igen, forbliver immune. Den holder ikke i det lange løb, fordi vira muterer, så kan de blive smittefarlige igen, sådan som vi f.eks. kender det fra almindelig influenza, der vender tilbage hver sæson i nye varianter. Det samme kan tænkes at ske med covid19-coronaen. Det vil dog så forhåbentligt blive med lavere dødelighed (almindelig influenza har en fatalitetsrate på omkring 1 pct.). Det er heller ikke ukendt, at en pandemi topper to gange, fordi der er sæsonvariation i smitteintensiteten. Myndighederne regner med, at antallet af smittede vil falde i sommerperioden og øges igen frem mod vinteren, hvis den har sæsonvariation som en almindelig influenza, men det vides ikke.

Som jeg indledte med at sige, så ligger epidemier uden for mit fagspeciale, og jeg har ikke opstillet en fuld model for, hvordan covid-19 virker. Vi har kun set på nogle centrale mekanismer, og hvordan de kan have påvirket de politiske valg. Jeg synes til gengæld, at det er helt afgørende, at myndigheder lægger deres beslutningsgrundlag på bordet.

Det er vigtigt af to grunde. For det første er doseringen af politikken vigtig. Jeg har nævnt nogle grunde til, at der kan være god ræson i at justere politikken, når en størrelse som R ændrer sig. Men regeringen bør vise hvorfor. For det andet er der både gevinster og ulemper ved forskellige tiltag. En god politik kan ikke bare begrundes med sine fordele, men at fordelene overstiger ulemperne, og at der ikke findes en alternativ politik med endnu større nettogevinster. Det spiller også en rolle, hvordan man vælger af veje forskellige slags fordele og ulemper. Det er et normalt krav til en regering, at den redegør for sit beslutningsgrundlag og vægtning – og det bliver ikke mindre, når der er tale om så vigtigt et problem som dette.